宋迅殊大洋环流与气候变化

职称:副研究员
学科专业:物理海洋学
办公电话:0571-81963673
电子邮件:songxs@sio.org.cn
通讯地址:浙江省杭州市保俶北路36号

扫码查看
个人名片
  • 个人简介

    主要从事热带海气相互作用、短期气候预报和高影响海气事件可预报性相关研究。

  • 教育经历

    2012.09-2018.12,浙江大学,港口、海岸及近海工程,博士 2009.09-2012.06,国家海洋局第二海洋研究所,物理海洋学,硕士 2005.09-2009.06,南京大学,大气科学,学士
  • 工作经历

    2018.12至今,自然资源部第二海洋研究所,助理研究员
  • 近五年主持承担的主要科研项目

    1. 国家自然科学基金青年项目,印度洋偶极子最优误差增长及可预报性的研究,2021-2023,主持

    2. 自然资源部第二海洋研究所基本科研业务费专项资金项目,印度洋偶极子集合预报系统和可预报性研究,2020-2022,主持

    3. 国家重点研发计划,高影响海-气环境事件预报模式的高分辨率海洋资料同化系统研发,2017-2022,参与

    4. 国家自然科学基金重点项目,近135年印度洋偶极子集合预报试验及可预报性研究,2016-2020,参与


  • 代表性学术论著

    1. Song, X., D. Chen, Y. Tang, and T. Liu, 2018a: An intermediate coupled model for the tropical ocean-atmosphere system. Sci. China Earth Sci.61, 1859–1874, https://doi.org/10.1007/s11430-018-9274-6.

    2. Song, X., Y. Tang, and D. Chen, 2018b: Decadal Variation in IOD Predictability During 1881–2016. Geophys. Res. Lett.45https://doi.org/10.1029/2018GL080221.

    3. Song, X., X. Li, S. Zhang, Y. Li, X. Chen, Y. Tang, and D. Chen, 2022a: A new nudging scheme for the current operational climate prediction system of the National Marine Environmental Forecasting Center of China. Acta Oceanol. Sin.41, 51–64, https://doi.org/10.1007/s13131-021-1857-4.

    4. Song, X., Y. Tang, X. Li, and T. Liu, 2022b: Decadal Variation of Predictability of the Indian Ocean Dipole during 1880–2017 Using an Ensemble Prediction System. Journal of Climate35, 5759–5771, https://doi.org/10.1175/JCLI-D-21-0848.1.

    5. Song, X., Y. Tang, T. Liu, and X. Li, 2022c: Predictability of Indian Ocean Dipole Over 138 Years Using a CESM Ensemble‐Prediction System. JGR Oceans127https://doi.org/10.1029/2021JC018210.

    6. Zhang, H., X. Liu, R. Wu,F. Liu, L. Yu, X. Shang, Y. Qi, Y. Wnag, X. Song, X. Xie, C. Yang, D. Tian, W. Zhang, 2019: Ocean Response to Successive Typhoons Sarika and Haima (2016) Based on Data Acquired via Multiple Satellites and Moored Array. Remote Sensing11, 2360, https://doi.org/10.3390/rs11202360.

    7. Liu, T., Y. Tang, D. Yang, X. Song, Z. Hou, Z. Shen, Y. Gao, Y. Wu, X. Li, B. Zhang, 2019: The relationship among probabilistic, deterministic and potential skills in predicting the ENSO for the past 161 years. Clim Dyn53, 6947–6960, https://doi.org/10.1007/s00382-019-04967-y.

    8. Gao, Y., T. Liu, X. Song, Z. Shen, Y. Tang, and D. Chen, 2020: An extension of LDEO5 model for ENSO ensemble predictions. Clim Dyn55, 2979–2991, https://doi.org/10.1007/s00382-020-05428-7.

    9. Zhang, H., X. Liu, R. Wu, D. Chen, D. Zhang, X. Shang, Y. Wang, X. Song, W. Jin, L. Yu, Y. Qi, D. Tian, W. Zhang, 2020: Sea surface current response patterns to tropical cyclones. Journal of Marine Systems208, 103345, https://doi.org/10.1016/j.jmarsys.2020.103345.

    10. Gao, Y., Y. Tang, X. Song, and Z. Shen, 2021: Parameter Estimation Based on a Local Ensemble Transform Kalman Filter Applied to El Niño–Southern Oscillation Ensemble Prediction. Remote Sensing13, 3923, https://doi.org/10.3390/rs13193923.

    11. Li, X., Y. Tang, X. Song, and T. Liu, 2022: Decadal variation of the rainfall predictability over the maritime continent in the wet season. Journal of Climate, 1–21, https://doi.org/10.1175/JCLI-D-21-0862.1.

    12. Liu, T., X. Song, and Y. Tang, 2022a: The predictability study of the two flavors of ENSO in the CESM model from 1881 to 2017. Clim Dyn59, 3343–3358, https://doi.org/10.1007/s00382-022-06269-2.

    13. Liu, T., X. Song, Y. Tang, Z. Shen, and X. Tan, 2022b: ENSO Predictability over the Past 137 Years Based on a CESM Ensemble Prediction System. Journal of Climate35, 763–777, https://doi.org/10.1175/JCLI-D-21-0450.1.

    14. Yao, W., X. Yan, Y. Tang, D. Yang, X. Tan, X. Song, and T. Liu, 2022: Multidecadal Variation in the Seasonal Predictability of Winter PNA and Its Sources. Geophysical Research Letters49https://doi.org/10.1029/2022GL099393.

  • 卫星海洋环境动力学国家重点实验室

    © 2021卫星海洋环境动力学国家重点实验室 版权所有.
    浙ICP备10040255号-4   流量统计   

  • 地址:杭州市保俶北路36号
    邮编:310012
  • 总机号码:+86-571-8196 3198
    传真:+86-571-8883 9374